Female site-specific transposase-induced recombination: a high-efficiency method for fine mapping mutations on the X chromosome in Drosophila.

نویسنده

  • Jeffrey M Marcus
چکیده

P-element transposons in the Drosophila germline mobilize only in the presence of the appropriate transposase enzyme. Sometimes, instead of mobilizing completely, P elements will undergo site-specific recombination with the homologous chromosome. Site-specific recombination is the basis for male recombination mapping, since the male germline does not normally undergo recombination. Site-specific recombination also takes place in females, but this has been difficult to study because of the obscuring effects of meiotic recombination. Using map functions, I demonstrate that it is possible to employ female site-specific transposase-induced recombination (FaSSTIR) to map loci on the X chromosome and predict that FaSSTIR mapping should be more efficient than meiotic mapping over short genetic intervals. Both FaSSTIR mapping and meiotic mapping were used to fine map the crossveinless locus on the X chromosome. Both techniques identified the same 10-kb interval as the probable location of the crossveinless mutation. Over short intervals (< approximately 7.6 cM), FaSSTIR produces more informative recombination events than does meiotic recombination. Over longer intervals, FaSSTIR is not always more efficient than meiotic mapping, but it produces the correct gene order. FaSSTIR matches the expectations suggested by the map functions and promises to be a useful technique, particularly for mapping X-linked loci.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping of Drosophila mutations using site-specific male recombination.

Although recombination does not usually occur in the male Drosophila germline, site-specific recombination can be induced at the ends of P elements. This finding suggested that male recombination could be used to map Drosophila mutations. In this article, we describe the general method and its application to the mapping of two EMS-induced female-sterile mutations, grauzone and cortex. Within tw...

متن کامل

Drosophila P element transposase induces male recombination additively and without a requirement for P element excision or insertion.

P element dysgenesis-associated male recombination in Drosophila was examined with a selective system focused upon a section of the third chromosome divided into eight recombination segments. Tests compared crossing over in the presence of none, one and two doses of P(delta 2-3)(99B), a non-mobile transposase source, in the absence of a mobilizable P element target in the genome. In the presenc...

متن کامل

Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila.

We describe an efficient method for generating female germline mosaics by inducing site-specific homologous mitotic recombination with a yeast recombinase (FLP) which is driven by a heat shock promoter. These germline mosaics are produced in flies heterozygous for the agametic, germline-dependent, dominant female sterile (DFS) mutation ovoD1, where only flies possessing germline clones are able...

متن کامل

Utilization of Site-Specific Recombination in Biopharmaceutical Production

Mammalian expression systems, due to their capacity in post-translational modification, are preferred systems for biopharmaceutical protein production. Several recombinant protein systems have been introduced to the market, most of which are under clinical development. In spite of significant improvements such as cell line engineering, introducing novel expression methods, gene silencing and pr...

متن کامل

The autosomal FLP-DFS technique for generating germline mosaics in Drosophila melanogaster.

The production of female germline chimeras is invaluable for analyzing the tissue specificity of recessive female sterile mutations as well as detecting the maternal effect of recessive zygotic lethal mutations. Previously, we developed the "FLP-DFS" technique to efficiently generate germline clones. This technique uses the X-linked germline-dependent dominant female sterile mutation ovoD1 as a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 163 2  شماره 

صفحات  -

تاریخ انتشار 2003